ISSN 1600-5368

Andrew D. Bond* and John E. Davies

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in main residue R factor = 0.062 wR factor = 0.181 Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Picoline

The crystal structure of 2-picoline (2-methylpyridine, C_6H_7N) has been determined at 120 (2) K following *in situ* crystal growth from the liquid. Molecules pack in a herring-bone-type arrangement in the non-centrosymmetric space group $P2_12_12_1$, with $C-H \cdots N$ contacts indicative of directional hydrogen bonds.

Comment

The picolines (methylpyridines) comprise a series of empirical formula C_6H_7N , with weak intermolecular interactions and low melting points. The crystal structure of 4-picoline (4-methylpyridine; m.p. 276 K) has been determined previously from a crystal grown using an elaborate modified Bridgman technique (Ohms *et al.*, 1985). We report here the crystal structure of 2-picoline (m.p. 206 K), determined at 120 (2) K from a crystal grown in situ in a 0.3 mm glass capillary. This work forms part of a study devoted to improving techniques for determining the crystal structures of substances that are liquids at room temperature (see, for example, Bond & Davies, 2001).

Molecules of (I) (Fig. 1) pack in a herring-bone-type arrangement (Fig. 2) in the non-centrosymmetric space group $P2_12_12_1$. Between molecules, C—H···N contacts exist that are close to linear [H4···N1ⁱ = 2.60 Å and C4—H4···N1ⁱ = 146.6°; H6···N1ⁱⁱ = 2.79 Å and C6—H6···N1ⁱⁱ = 170.1°; symmetry codes: (i) $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$; (ii) $-\frac{1}{2} + x$, -y, -z], indicative of directional hydrogen bonds.

Experimental

The sample (99%) was obtained from the Aldrich Company and was used without further purification. The crystal was grown in a 0.3 mm glass capillary tube at 206 K (a temperature only slightly less than the melting point of the solid in the capillary tube) using a technique described previously (Davies & Bond, 2001). The crystal was subsequently cooled to 120 (2) K for data collection. The length of the cylindrical crystal was not estimated, but it exceeded the diameter of the collimator (0.35 mm).

 ${\rm (\!C\!\!\!\!C}$ 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 11 October 2001

Accepted 16 October 2001

Online 20 October 2001

Figure 1

The molecular structure and atom-labelling scheme for (I) showing displacement ellipsoids at the 50% probability level for non-H atoms (XP; Sheldrick, 1993). Disorder of the H atoms in the methyl group has been omitted for clarity.

Crystal data

 $\begin{array}{l} C_{6}H_{7}N\\ M_{r}=93.13\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ a=6.6593~(5)~\text{\AA}\\ b=7.0878~(6)~\text{\AA}\\ c=11.7358~(7)~\text{\AA}\\ V=553.93~(7)~\text{\AA}^{3}\\ Z=4\\ D_{x}=1.117~\text{Mg~m}^{-3} \end{array}$

Data collection

Nonius KappaCCD diffractometer Thin-slice ω and φ scans 3477 measured reflections 749 independent reflections 672 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.062$
$wR(F^2) = 0.181$
S = 1.10
749 reflections
71 parameters

Mo K α radiation Cell parameters from 4571 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 120 (2) KCylinder, colourless 0.15 mm (radius)

$R_{\rm int} = 0.110$
$\theta_{\rm max} = 27.5^\circ$
$h = -4 \rightarrow 8$
$k = -9 \rightarrow 7$
$l = -15 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1425P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{Å}^{-3}$

The methyl H atoms are disordered and were modelled as two sets of idealized positions. All H atoms were placed geometrically and allowed to refine with independent isotropic displacement para-

Figure 2

Projection onto (100) showing the herring-bone packing in (I) (*CAMERON*; Watkin *et al.*, 1996). $C-H \cdots N$ interactions are shown as dotted lines.

meters (one common parameter for all methyl H atoms). The methyl group was allowed to rotate about its local threefold axis. Friedel pairs (486) were averaged before merging of data in $P2_12_12_1$; the reported value of R_{int} corresponds to subsequent merging of equivalent reflections in this space group.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

We thank the EPSRC for financial assistance towards the purchase of the Nonius CCD diffractometer.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.
- Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1039-o1040.
- Davies, J. E. & Bond, A. D. (2001). Acta Cryst. E57, 0947-0949.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Ohms, U., Guth, H., Treutmann, W., Dannöhl, H., Schweig, A. & Heger, G. (1985). J. Chem. Phys. 83, 273–279.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
- Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.